There have been a number of experiments in which gas turbines were used to power seagoing commercial vessels. The earliest of these experiments may have been the oil tanker "Aurus" (Anglo Saxon Petroleum) - circa 1949.
The United States Maritime Commission were looking for options to update WWII Liberty ships and heavy duty gas turbines were one of those selected. In 1956 The "John Sergeant" was lenghened and installed with a General Electric 6600 SHP HD gas turbine, reduction gearing and a variable pitch propeller. It operated for 9700 hours using residual fuel for 7000 hours. The success of this trial opened the way for more development by GE on the use of HD gas turbines for marine use with heavy fuels. The "John Sergeant" was scrapped in 1972 at Portsmouth PA.
Between 1970 and 1982, Seatrain Container Lines operated a scheduled container service across the North Atlantic with four 26,000 tonne dwt. container ships. Those ships were powered by twin Pratt & Whitney gas turbines of the FT 4 series. The four ships in the class were named "Euroliner", "Eurofreighter", "Asialiner" and "Asiafreighter". They operated a transatlantic container service between ports on the eastern seaboard of the United States and ports in north west Europe. Following the dramatic OPEC price increases of the mid-nineteen seventies, operations were constrained by rising fuel costs. Some modification of the engine systems on those ships was undertaken to permit the burning of a lower grade of fuel (i.e. marine diesel). The modifications were partially successful. It was proved that particular fuel could be used in a marine gas turbine but, savings made were less than anticipated due to increased maintenance requirements. After 1982 the ships were sold, then re-engined with more economical diesel engines. Because the new engines were much larger, there was a consequential loss of some cargo space.
The first passenger ferry to use a gas turbine was the GTS Finnjet, built in 1977 and powered with two Pratt & Whitney FT 4C-1 DLF turbines, generating 55000 kW and propelling the ship to a speed of 31 knots. However, the Finnjet also illustrated the shortcomings of gas turbine propulsion in commercial craft, as high fuel prices made operating her unprofitable. After just four years of service additional diesel engines were installed on the ship to allow less costly operations during off-season. Another example of commercial usage of gas turbines in a passenger ship are Stena Line's HSS class fastcraft ferries. HSS 1500-class Stena Explorer, Stena Voyager and Stena Discovery vessels use combined gas and gas (COGAG) setups of twin GE LM2500 plus GE LM1600 power for a total of 68,000 kW. The slightly smaller HSS 900-class Stena Charisma, uses twin ABB–STAL GT35 turbines rated at 34,000 kW gross. The Stena Discovery was withdrawn from service in 2007, another victim of too high fuel costs.
In July 2000, the Millennium became the first cruise ship to be propelled by gas turbines, in a Combined Gas and Steam Turbine configuration. The RMS Queen Mary 2 uses a Combined Diesel and Gas Turbine configuration.
The United States Maritime Commission were looking for options to update WWII Liberty ships and heavy duty gas turbines were one of those selected. In 1956 The "John Sergeant" was lenghened and installed with a General Electric 6600 SHP HD gas turbine, reduction gearing and a variable pitch propeller. It operated for 9700 hours using residual fuel for 7000 hours. The success of this trial opened the way for more development by GE on the use of HD gas turbines for marine use with heavy fuels. The "John Sergeant" was scrapped in 1972 at Portsmouth PA.
Between 1970 and 1982, Seatrain Container Lines operated a scheduled container service across the North Atlantic with four 26,000 tonne dwt. container ships. Those ships were powered by twin Pratt & Whitney gas turbines of the FT 4 series. The four ships in the class were named "Euroliner", "Eurofreighter", "Asialiner" and "Asiafreighter". They operated a transatlantic container service between ports on the eastern seaboard of the United States and ports in north west Europe. Following the dramatic OPEC price increases of the mid-nineteen seventies, operations were constrained by rising fuel costs. Some modification of the engine systems on those ships was undertaken to permit the burning of a lower grade of fuel (i.e. marine diesel). The modifications were partially successful. It was proved that particular fuel could be used in a marine gas turbine but, savings made were less than anticipated due to increased maintenance requirements. After 1982 the ships were sold, then re-engined with more economical diesel engines. Because the new engines were much larger, there was a consequential loss of some cargo space.
The first passenger ferry to use a gas turbine was the GTS Finnjet, built in 1977 and powered with two Pratt & Whitney FT 4C-1 DLF turbines, generating 55000 kW and propelling the ship to a speed of 31 knots. However, the Finnjet also illustrated the shortcomings of gas turbine propulsion in commercial craft, as high fuel prices made operating her unprofitable. After just four years of service additional diesel engines were installed on the ship to allow less costly operations during off-season. Another example of commercial usage of gas turbines in a passenger ship are Stena Line's HSS class fastcraft ferries. HSS 1500-class Stena Explorer, Stena Voyager and Stena Discovery vessels use combined gas and gas (COGAG) setups of twin GE LM2500 plus GE LM1600 power for a total of 68,000 kW. The slightly smaller HSS 900-class Stena Charisma, uses twin ABB–STAL GT35 turbines rated at 34,000 kW gross. The Stena Discovery was withdrawn from service in 2007, another victim of too high fuel costs.
In July 2000, the Millennium became the first cruise ship to be propelled by gas turbines, in a Combined Gas and Steam Turbine configuration. The RMS Queen Mary 2 uses a Combined Diesel and Gas Turbine configuration.
No comments:
Post a Comment